78 research outputs found

    Galphas-coupled receptor signaling actively down-regulates α4β1-integrin affinity: A possible mechanism for cell de-adhesion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activation of integrins in response to inside-out signaling serves as a basis for leukocyte arrest on endothelium, and migration of immune cells. Integrin-dependent adhesion is controlled by the conformational state of the molecule (i.e. change in the affinity for the ligand and molecular unbending (extension)), which is regulated by seven-transmembrane Guanine nucleotide binding Protein-Coupled Receptors (GPCRs). α<sub>4</sub>β<sub>1</sub>-integrin (CD49d/CD29, Very Late Antigen-4, VLA-4) is expressed on leukocytes, hematopoietic stem cells, hematopoietic cancer cells, and others. Affinity and extension of VLA-4 are both rapidly up-regulated by inside-out signaling through several Gα<sub>i</sub>-coupled GPCRs. The goal of the current report was to study the effect of Gα<sub>s</sub>-coupled GPCRs upon integrin activation.</p> <p>Results</p> <p>Using real-time fluorescent ligand binding to assess affinity and a FRET based assay to probe α<sub>4</sub>β<sub>1</sub>-integrin unbending, we show that two Gα<sub>s</sub>-coupled GPCRs (H2-histamine receptor and β2-adrenergic receptor) as well as several cAMP agonists can rapidly down modulate the affinity of VLA-4 activated through two Gα<sub>i</sub>-coupled receptors (CXCR4 and FPR) in U937 cells and primary human peripheral blood monocytes. This down-modulation can be blocked by receptor-specific antagonists. The Gα<sub>s</sub>-induced responses were not associated with changes in the expression level of the Gα<sub>i</sub>-coupled receptors. In contrast, the molecular unbending of VLA-4 was not significantly affected by Gα<sub>s</sub>-coupled GPCR signaling. In a VLA-4/VCAM-1-specific myeloid cell adhesion system, inhibition of the VLA-4 affinity change by Gα<sub>s</sub>-coupled GPCR had a statistically significant effect upon cell aggregation.</p> <p>Conclusion</p> <p>We conclude that Gα<sub>s</sub>-coupled GPCRs can rapidly down modulate the affinity state of VLA-4 binding pocket through a cAMP dependent pathway. This plays an essential role in the regulation of cell adhesion. We discuss several possible implications of this described phenomenon.</p

    FRET Detection of Lymphocyte Function-Associated Antigen-1 Conformational Extension

    Get PDF
    Lymphocyte function-associated antigen 1 (LFA-1, CD11a/CD18, αLβ2-integrin) and its ligands are essential for adhesion between T-cells and antigen-presenting cells, formation of the immunological synapse, and other immune cell interactions. LFA-1 function is regulated through conformational changes that include the modulation of ligand binding affinity and molecular extension. However, the relationship between molecular conformation and function is unclear. Here fluorescence resonance energy transfer (FRET) with new LFA-1-specific fluorescent probes showed that triggering of the pathway used for T-cell activation induced rapid unquenching of the FRET signal consistent with extension of the molecule. Analysis of the FRET quenching at rest revealed an unexpected result that can be interpreted as a previously unknown LFA-1 conformation

    Characterization of a Cdc42 Protein Inhibitor and Its Use as a Molecular Probe

    Get PDF
    Cdc42 plays important roles in cytoskeleton organization, cell cycle progression, signal transduction, and vesicle trafficking. Overactive Cdc42 has been implicated in the pathology of cancers, immune diseases, and neuronal disorders. Therefore, Cdc42 inhibitors would be useful in probing molecular pathways and could have therapeutic potential. Previous inhibitors have lacked selectivity and trended toward toxicity. We report here the characterization of a Cdc42-selective guanine nucleotide binding lead inhibitor that was identified by high throughput screening. A second active analog was identified via structure-activity relationship studies. The compounds demonstrated excellent selectivity with no inhibition toward Rho and Rac in the same GTPase family. Biochemical characterization showed that the compounds act as noncompetitive allosteric inhibitors. When tested in cellular assays, the lead compound inhibited Cdc42-related filopodia formation and cell migration. The lead compound was also used to clarify the involvement of Cdc42 in the Sin Nombre virus internalization and the signaling pathway of integrin VLA-4. Together, these data present the characterization of a novel Cdc42-selective allosteric inhibitor and a related analog, the use of which will facilitate drug development targeting Cdc42-related diseases and molecular pathway studies that involve GTPases.This work was supported by National Science Foundation (NSF) Grant MCB0956027 and National Institutes of Health Grant R03 MH081231-01 from the Molecular Libraries Program (to A. W. N.); University of New Mexico Center for Molecular Discovery Molecular Libraries Probe Production Centers (UNMCMD MLPCN) National Institutes of Health Grants U54MH084690 and R01HL081062 (to L. A. S.); UNM National Center for Research Resources (NCRR) Grant 5P20RR016480 (to L. G. H.); National Institutes of Health Grant R21 CA170375-01 through the NCI (to A. W. N., L. G. H., and J. E. G.); National Institutes of Health Grants NS066429 and AI092130 (to T. B.); and University of Kansas Specialized Chemistry Center (KUSCC) MLPCN National Institutes of Health Grant U54HG005031 (to J. A.)

    Functional and clinical relevance of VLA-4 (CD49d/CD29) in ibrutinib-treated chronic lymphocytic leukemia

    Get PDF
    The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, which antagonizes B cell receptor (BCR) signals, demonstrates remarkable clinical activity in chronic lymphocytic leukemia (CLL). The lymphocytosis experienced by most patients under ibrutinib has previously been attributed to inhibition of BTK-dependent integrin and chemokine cues operating to retain the tumor cells in nodal compartments. Here, we show that the VLA-4 integrin, as expressed by CD49d-positive CLL, can be inside-out activated upon BCR triggering, thus reinforcing the adhesive capacities of CLL cells. In vitro and in vivo ibrutinib treatment, although reducing the constitutive VLA-4 activation and cell adhesion, can be overcome by exogenous BCR triggering in a BTK-independent manner involving PI3K. Clinically, in three independent ibrutinib-treated CLL cohorts, CD49d expression identifies cases with reduced lymphocytosis and inferior nodal response and behaves as independent predictor of shorter progression-free survival, suggesting the retention of CD49d-expressing CLL cells in tissue sites via activated VLA-4. Evaluation of CD49d expression should be incorporated in the characterization of CLL undergoing therapy with BCR inhibitors

    Demonstration of catch bonds between an integrin and its ligand

    Get PDF
    Binding of integrins to ligands provides anchorage and signals for the cell, making them prime candidates for mechanosensing molecules. How force regulates integrin–ligand dissociation is unclear. We used atomic force microscopy to measure the force-dependent lifetimes of single bonds between a fibronectin fragment and an integrin α5β1-Fc fusion protein or membrane α5β1. Force prolonged bond lifetimes in the 10–30-pN range, a counterintuitive behavior called catch bonds. Changing cations from Ca2+/Mg2+ to Mg2+/EGTA and to Mn2+ caused longer lifetime in the same 10–30-pN catch bond region. A truncated α5β1 construct containing the headpiece but not the legs formed longer-lived catch bonds that were not affected by cation changes at forces <30 pN. Binding of monoclonal antibodies that induce the active conformation of the integrin headpiece shifted catch bonds to a lower force range. Thus, catch bond formation appears to involve force-assisted activation of the headpiece but not integrin extension

    Bioactive Hydrogel Substrates: Probing Leukocyte Receptor–Ligand Interactions in Parallel Plate Flow Chamber Studies

    Get PDF
    The binding of activated integrins on the surface of leukocytes facilitates the adhesion of leukocytes to vascular endothelium during inflammation. Interactions between selectins and their ligands mediate rolling, and are believed to play an important role in leukocyte adhesion, though the minimal recognition motif required for physiologic interactions is not known. We have developed a novel system using poly(ethylene glycol) (PEG) hydrogels modified with either integrin-binding peptide sequences or the selectin ligand sialyl Lewis X (SLe(X)) within a parallel plate flow chamber to examine the dynamics of leukocyte adhesion to specific ligands. The adhesive peptide sequences arginine–glycine–aspartic acid–serine (RGDS) and leucine–aspartic acid–valine (LDV) as well as sialyl Lewis X were bound to the surface of photopolymerized PEG diacrylate hydrogels. Leukocytes perfused over these gels in a parallel plate flow chamber at physiological shear rates demonstrate both rolling and firm adhesion, depending on the identity and concentration of ligand bound to the hydrogel substrate. This new system provides a unique polymer-based model for the study of interactions between leukocytes and endothelium as well as a platform to develop improved scaffolds for cardiovascular tissue engineering

    Human eosinophil adhesion and degranulation stimulated with eotaxin and RANTES in vitro: Lack of interaction with nitric oxide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Airway eosinophilia is considered a central event in the pathogenesis of asthma. The toxic components of eosinophils are thought to be important in inducing bronchial mucosal injury and dysfunction. Previous studies have suggested an interaction between nitric oxide (NO) and chemokines in modulating eosinophil functions, but this is still conflicting. In the present study, we have carried out functional assays (adhesion and degranulation) and flow cytometry analysis of adhesion molecules (VLA-4 and Mac-1 expression) to evaluate the interactions between NO and CC-chemokines (eotaxin and RANTES) in human eosinophils.</p> <p>Methods</p> <p>Eosinophils were purified using a percoll gradient followed by immunomagnetic cell separator. Cell adhesion and degranulation were evaluated by measuring eosinophil peroxidase (EPO) activity, whereas expression of Mac-1 and VLA-4 was detected using flow cytometry.</p> <p>Results</p> <p>At 4 h incubation, both eotaxin (100 ng/ml) and RANTES (1000 ng/ml) increased by 133% and 131% eosinophil adhesion, respectively. L-NAME alone (but not D-NAME) also increased the eosinophil adhesion, but the co-incubation of L-NAME with eotaxin or RANTES did not further affect the increased adhesion seen with chemokines alone. In addition, L-NAME alone (but not D-NAME) caused a significant cell degranulation, but it did not affect the CC-chemokine-induced cell degranulation. Incubation of eosinophils with eotaxin or RANTES, in absence or presence of L-NAME, did not affect the expression of VLA-4 and Mac-1 on eosinophil surface. Eotaxin and RANTES (100 ng/ml each) also failed to elevate the cyclic GMP levels above baseline in human eosinophils.</p> <p>Conclusion</p> <p>Eotaxin and RANTES increase the eosinophil adhesion to fibronectin-coated plates and promote cell degranulation by NO-independent mechanisms. The failure of CC-chemokines to affect VLA-4 and Mac-1 expression suggests that changes in integrin function (avidity or affinity) are rather involved in the enhanced adhesion.</p
    corecore